Interlandltd.ru

Лечебная медицина

Космическое пространство

23-10-2023

Перейти к: навигация, поиск

Косми́ческое простра́нство (ко́смос) — относительно пустые участки Вселенной, которые лежат вне границ атмосфер небесных тел. Вопреки распространённым представлениям, космос не является абсолютно пустым пространством — в нём существует очень низкая плотность некоторых частиц (преимущественно водорода), а также электромагнитное излучение и межзвездное вещество. Слово «космос» имеет несколько различных значений. Иногда под космосом понимают всё пространство вне Земли, включая небесные тела.

Границы

Чёткой границы не существует, атмосфера разрежается постепенно по мере удаления от земной поверхности, и до сих пор нет единого мнения, что считать фактором начала космоса. Если бы температура была постоянной, то давление бы изменялось по экспоненциальному закону от 100 кПа на уровне моря до нуля. Международная авиационная федерация в качестве рабочей границы между атмосферой и космосом установила высоту в 100 км (линия Кармана), потому что на этой высоте для создания подъёмной аэродинамической силы необходимо, чтобы летательный аппарат двигался с первой космической скоростью, из-за чего теряется смысл авиаполёта[1][2][3][4].

Астрономы из США и Канады измерили границу влияния атмосферных ветров и начала воздействия космических частиц. Она оказалась на высоте 118 километров, хотя сами NASA считают границей космоса 122 км. На такой высоте шаттлы переключались с обычного маневрирования с использованием только ракетных двигателей на аэродинамическое с «опорой» на атмосферу[2][3].

Солнечная система

Пространство в Солнечной системе называют межпланетным пространством, которое переходит в межзвёздное пространство в точках гелиопаузы солнцестояния. Вакуум космоса на самом деле не является абсолютным — в нём присутствуют атомы и молекулы, обнаруженные с помощью микроволновой спектроскопии, реликтовое излучение, которое осталось от Большого Взрыва, и космические лучи, в которых содержатся ионизированные атомные ядра и разные субатомные частицы. Также есть газ, плазма, пыль, небольшие метеоры и космический мусор (материалы, которые остались от деятельности человека на орбите). Отсутствие воздуха делает космическое пространство (и поверхность Луны) идеальными участками для астрономических наблюдений на всех длинах волн электромагнитного спектра. Доказательством этого являются фотографии, полученные при помощи космического телескопа Хаббл. Кроме того, бесценную информацию о планетах, астероидах и кометах Солнечной системы получают с помощью космических аппаратов.

Воздействие пребывания в открытом космосе на организм человека

Как утверждают учёные НАСА, вопреки распространённым представлениям, при попадании в открытый космос без защитного скафандра человек не замёрзнет, не взорвётся и мгновенно не потеряет сознание, его кровь не закипит — вместо этого настанет смерть от недостатка кислорода. Опасность заключается в самом процессе декомпрессии, именно этот период времени наиболее опасен для организма так как при взрывной декомпрессии пузырьки газа в крови начинают расширяться, если присутствует хладагент (например азот), то при таких условиях он замораживает кровь, известно что в вакууме жидкость не существует (или газ или твердое состояние), за исключением жидкого Гелия (квантовая жидкость)

Сперва со слизистых оболочек организма (язык, глаза, лёгкие) начнёт быстро испаряться вода. Некоторые другие проблемы — декомпрессионная болезнь, солнечные ожоги незащищённых участков кожи и поражение подкожных тканей — начнут сказываться уже через 10 секунд. В какой-то момент человек потеряет сознание из-за нехватки кислорода. Смерть может наступить примерно через 1-2 минуты, хотя точно это неизвестно. Тем не менее, если не задерживать дыхание в лёгких (попытка задержки приведёт к баротравме), то 30-60 секунд пребывания в открытом космосе не вызовут каких-либо необратимых повреждений человеческого организма.[5]

В НАСА описывают случай, когда человек случайно оказался в пространстве, близком к вакууму (давление ниже 1 Па) из-за утечки воздуха из скафандра. Человек оставался в сознании приблизительно 14 секунд — примерно такое время требуется для того, чтобы обеднённая кислородом кровь попала из лёгких в мозг. Внутри скафандра не возник полный вакуум, и рекомпрессия испытательной камеры началась приблизительно через 15 секунд. Сознание вернулось к человеку, когда давление поднялось до эквивалентного высоте примерно 4,6 км. Позже попавший в вакуум человек рассказывал, что он чувствовал и слышал, как из него выходит воздух, и его последнее осознанное воспоминание состояло в том, что он чувствовал, как вода на его языке закипает.

Журнал «Aviation Week and Space Technology» 13 февраля 1995 г. опубликовал письмо, в котором рассказывалось об инциденте, произошедшем 16 августа 1960 года во время подъёма стратостата с открытой гондолой на высоту 19,5 миль для совершения рекордного прыжка с парашютом (Проект «Эксельсиор»). Правая рука пилота оказалась разгерметизирована, однако он решил продолжить подъём. Рука, как и можно было ожидать, испытывала крайне болезненные ощущения, и ею нельзя было пользоваться. Однако при возвращении пилота в более плотные слои атмосферы состояние руки вернулось в норму.[6]

Границы на пути к космосу и пределы дальнего космоса

Атмосфера и околоземное космическое пространство

  • Уровень моря — 101,3 кПа (1 атм.; 760 мм рт. ст атмосферного давления), плотность среды 2,7·1019 молекул в см³.
  • 0,5 км — до этой высоты проживает 80 % человеческого населения мира.
  • 2 км — до этой высоты проживает 99 % населения мира[7].
  • 2—3 км — начало проявления недомоганий (горная болезнь) у неакклиматизированных людей.
  • 4,7 км — МФА требует дополнительного снабжения кислородом для пилотов и пассажиров.
  • 5,0 км — 50 % от атмосферного давления на уровне моря.
  • 5,3 км — половина всей массы атмосферы лежит ниже этой высоты (немного ниже вершины горы Эльбрус).
  • 6 км — граница постоянного обитания человека, граница наземной жизни в горах.
  • 6,6 км — самая высоко расположенная каменная постройка (гора Льюльяильяко, Южная Америка)[8].
  • 7 км — граница приспособляемости человека к длительному пребыванию в горах.
  • 8,2 км — граница смерти без кислородной маски: даже здоровый и тренированный человек может в любой момент потерять сознание и погибнуть.
  • 8,848 км — высочайшая точка Земли гора Эверест — предел доступности пешком.
  • 9 км — предел приспособляемости к кратковременному дыханию атмосферным воздухом.
  • 12 км — дыхание воздухом эквивалентно пребыванию в космосе (одинаковое время потери сознания ~10—20 с); предел кратковременного дыхания чистым кислородом без дополнительного давления; потолок дозвуковых пассажирских лайнеров.
  • 15 км — дыхание чистым кислородом эквивалентно пребыванию в космосе.
  • 16 км — при нахождении в высотном костюме в кабине нужно дополнительное давление. Над головой осталось 10 % атмосферы.
  • 10—18 км — граница между тропосферой и стратосферой на разных широтах (тропопауза). Также это граница подъёма обычных облаков, дальше простирается разрежённый и сухой воздух.
  • 18,9—19,35 — линия Армстронга — начало космоса для организма человека — закипание воды при температуре человеческого тела. Внутренние телесные жидкости на этой высоте ещё не кипят, поскольку тело генерирует достаточно внутреннего давления, чтобы предотвратить этот эффект, но могут начать кипеть слюна и слёзы с образованием пены, набухать глаза.
  • 19 км — яркость тёмно-фиолетового неба в зените 5 % от яркости чистого синего неба на уровне моря (74,3—75 свечей против 1500 свечей на м²[9]), днём могут быть видны самые яркие звёзды и планеты.
  • 20 км — интенсивность первичной космической радиации начинает преобладать над вторичной (рождённой в атмосфере).
  • 20 км — потолок тепловых аэростатов (монгольфьеров) (19 811 м)[10].
  • 20—22 км — верхняя граница биосферы: предел подъёма в атмосферу живых спор и бактерий воздушными потоками.
  • 20—25 км — яркость неба днём в 20—40 раз меньше яркости на уровне моря, как в центре полосы полного солнечного затмения и как в сумерки, когда Солнце ниже горизонта на 9—10 градусов и видны звёзды до 2-й звёздной величины.
  • 25 км — днём можно ориентироваться по ярким звёздам.
  • 25—26 км — максимальная высота установившегося полёта существующих реактивных самолётов (практический потолок).
  • 15—30 км — озоновый слой на разных широтах.
  • 34,668 км — официальный рекорд высоты для воздушного шара (стратостата), управляемого двумя стратонавтами (Проект Страто-Лаб, 1961 г.).
  • 35 км — начало космоса для воды или тройная точка воды: на этой высоте вода кипит при 0 °C, а выше не может находиться в жидком виде.
  • 37,8 км — рекорд высоты существующих турбореактивных самолётов (МиГ-25М, динамический потолок)[11].
  • 38,48 км (52 000 шагов) — верхняя граница атмосферы в 11 веке: первое научное определение высоты атмосферы по продолжительности сумерек (араб. учёный Альгазен, 965—1039 гг.)[12].
  • 41,42 км — рекорд высоты стратостата, управляемого одним человеком, а также рекорд высоты прыжка с парашютом, выполненный вице-президентом компании Гугл Аланом Юстасом 24 октября 2014 года.[13]
  • 45 км — теоретический предел для прямоточного воздушно-реактивного самолёта.
  • 48 км — атмосфера не ослабляет ультрафиолетовые лучи Солнца.
  • 50 км — граница между стратосферой и мезосферой (стратопауза).
  • 51,694 км — последний пилотируемый рекорд высоты в докосмическую эпоху (Джозеф Уокер на ракетоплане X-15, 30 марта 1961 г.)
  • ок. 53 км — рекорд высоты для газового беспилотного аэростата.
  • 55 км — атмосфера не воздействует на космическую радиацию.
  • 40—80 км — максимальная ионизация воздуха (превращение воздуха в плазму) от трения о корпус спускаемого аппарата при входе в атмосферу с первой космической скоростью[14].
  • 70 км — верхняя граница атмосферы в 1714 г. по расчёту Эдмунда Галлея на основе данных альпинистов, законе Бойля и наблюдений за метеорами[15].
  • 80 км — граница между мезосферой и термосферой (мезопауза): высота серебристых облаков.
  • 80,45 км (50 миль) — официальная высота границы космоса в США.
  • 100 км — официальная международная граница между атмосферой и космосом — линия Кармана, определяющая границу между аэронавтикой и космонавтикой. Аэродинамические поверхности (крылья) начиная с этой высоты не имеют смысла, так как скорость полёта для создания подъёмной силы становится выше первой космической скорости и атмосферный летательный аппарат превращается в космический спутник. Плотность среды на этой высоте 12 триллионов молекул на 1 дм³[16]
  • 100 км — зарегистрированная граница атмосферы в 1902 г.: открытие отражающего радиоволны ионизированного слоя Кеннелли — Хевисайда 90—120 км.
  • 118 км — переход от атмосферного ветра к потокам заряжённых частиц.
  • 122 км (400 000 футов) — первые заметные проявления атмосферы во время возвращения на Землю с орбиты: набегающий воздух начинает разворачивать Спейс Шаттл носом по ходу движения, начинается ионизация воздуха от трения и нагрев корпуса.
  • 120—130 км — спутник на круговой орбите с такой высотой сможет сделать не более одного оборота[17].
  • 150—180 км — высота перигея орбиты первых пилотируемых космических полётов.
  • 200 км — наиболее низкая возможная орбита с краткосрочной стабильностью (до нескольких дней).
  • 302 км — максимальная высота (апогей) первого пилотируемого космического полёта (Гагарин Ю.А. на космическом корабле Восток-1, 12 апреля 1961 г.)
  • 320 км — зарегистрированная граница атмосферы в 1927 г.: открытие отражающего радиоволны слоя Эплтона.
  • 350 км — наиболее низкая возможная орбита с долгосрочной стабильностью (до нескольких лет).
  • ок. 400 км — высота орбиты Международной космической станции
  • 500 км — начало внутреннего протонного радиационного пояса и окончание безопасных орбит для длительных полётов человека.
  • 690 км — граница между термосферой и экзосферой.
  • 1000—1100 км — максимальная высота полярных сияний, последнее видимое с поверхности Земли проявление атмосферы (но обычно хорошо заметные сияния происходят на высотах 90—400 км).
  • 1372 км — максимальная высота, достигнутая человеком в долунную эпоху (корабль Джемини-11 2 сентября 1966 г).
  • 2000 км — атмосфера не оказывает воздействия на спутники и они могут существовать на орбите многие тысячелетия.
  • 3000 км — максимальная интенсивность потока протонов внутреннего радиационного пояса (до 0,5—1 Гр/час)[18].
  • 12 756 км — мы отдалились на расстояние, равное диаметру планеты Земля.
  • 17 000 км — внешний электронный радиационный пояс.
  • 27 743 км — наименьшее расстояние от Земли, на котором пролетел заранее (свыше 1 дня) обнаруженный астероид 2012 DA14 диаметром 44 м и массой около 130 тыс. тонн.
  • 35 786 км — высота геостационарной орбиты, спутник на такой высоте будет всегда висеть над одной точкой экватора. В первой половине 20-го века эта высота считалась теоретическим пределом существования атмосферы. Если бы вся атмосфера равномерно вращалась вместе с Землёй, то с этой высоты на экваторе центробежная сила вращения будет превосходить гравитационные силы, и молекулы воздуха, вышедшие за эту границу, будут разлетаться в разные стороны.
  • ок. 90 000 км — расстояние до головной ударной волны, образованной столкновением магнитосферы Земли с солнечным ветром.
  • ок. 100 000 км — верхняя замеченная спутниками граница экзосферы (геокорона) Земли. Атмосфера закончилась, началось межпланетное пространство

Межпланетное пространство

  • 363 104—405 696 км — высота орбиты Луны над Землёй.
  • 401 056 км — абсолютный рекорд высоты, на которой был человек (Аполлон-13, 14 апреля 1970 г.).
  • 930 000 км — радиус гравитационной сферы Земли и максимальная высота существования её спутников. Выше 930 000 км притяжение Солнца начинает преобладать, и оно будет перетягивать поднявшиеся выше тела.
  • 1 500 000 км — расстояние до одной из точек либрации L2, в которых попавшие туда тела находятся в гравитационном равновесии. Космическая станция, выведенная в эту точку, не будучи орбитальным спутником, с минимальными затратами топлива на коррекции траектории всегда бы следовала за Землёй и находилась бы в её тени.
  • 21 000 000 км — на таком расстоянии практически исчезает гравитационное воздействие Земли на пролетающие объекты[2][3].
  • 40 000 000 км — минимальное расстояние от Земли до ближайшей большой планеты Венера.
  • 56 000 000 — 58 000 000 км — минимальное расстояние до Марса во время Великих противостояний.
  • 149 597 870,7 км — среднее расстояние от Земли до Солнца. Это расстояние служит мерилом расстояний в Солнечной системе и называется астрономическая единица (а. е.).
  • 590 000 000 км — минимальное расстояние от Земли до ближайшей большой газовой планеты Юпитер. Дальнейшие цифры указывают расстояние от Солнца.
  • 4 500 000 000 км (4,5 миллиардов км) — радиус границы околосолнечного межпланетного пространства — радиус орбиты самой дальней большой планеты Нептун.
  • 8 230 000 000 км — дальняя граница пояса Койпера — пояса малых ледяных планет, в который входит карликовая планета Плутон.
  • 19 500 000 000 км — расстояние до самого дальнего на сегодня межзвёздного автоматического космического аппарата Вояджер-1.
  • 35 000 000 000 км (35 млрд км) — предел дальнобойности солнечного ветра — граница гелиосферы, начало межзвёздного пространства.
  • 65 000 000 000 км — расстояние до аппарата Вояджер-1 к 2100 году.

Межзвёздное пространство

  • ок. 300 000 000 000 км (300 млрд км) — ближняя граница облака Хиллса, являющемся внутренней частью облака Оорта — большого, но очень разрежённого скопища ледяных глыб, которые медленно летят по своим орбитам, но, изредка выбиваясь из этого облака и приближаясь к Солнцу, становятся кометами.
  • 9 460 730 472 580,8 км ( ок. 9,5 триллионов км) — световой год — расстояние, которое свет проходит за 1 год. Служит для измерения межзвёздных и межгалактических расстояний.
  • до 15 000 000 000 000 км — дальность вероятного нахождения гипотетического спутника Солнца звезды Немезида
  • до 20 000 000 000 000 км (20 трлн км, 2 св. года) — гравитационные границы Солнечной системы (Сфера Хилла) — внешняя граница Облака Оорта, максимальная дальность существования планет и комет.
  • 30 856 776 000 000 км — 1 парсек — более узкопрофессиональная астрономическая единица измерения межзвёздных расстояний, равен 3,2616 светового года.
  • ок. 40 000 000 000 000 км (40 трлн. км, 4,243 св. года) — расстояние до ближайшей к нам известной звезды Проксима Центавра
  • 100 000 000 000 000 км (100 трлн. км, ок. 10 св. лет) — в пределах этого радиуса находятся 11 ближайших звёзд.
  • ок. 300 000 000 000 000 км (300 трлн км, 30 св. лет) — размер Местного межзвёздного облака, через которое сейчас движется Солнечная система (плотность среды этого облака 300 атомов на 1 дм³).
  • ок. 3 000 000 000 000 000 км (3 квадриллиона км, 300 св. лет) — размер Местного газового пузыря, в состав которого входит Местное межзвёздное облако с Солнечной системой (плотность среды 50 атомов на 1 дм³).
  • ок. 33 000 000 000 000 000 км (33 квдрлн км, 3500 св. лет) — толщина галактического Рукава Ориона, в котором находится Местный пузырь.
  • ок. 300 000 000 000 000 000 км (300 квдрлн км) — расстояние от Солнца до ближайшего внешнего края гало нашей галактики Млечный Путь (англ. Milky Way). За его пределами простирается чёрное, почти пустое и беззвёздное межгалактическое пространство с едва различимыми без телескопа маленькими пятнами нескольких ближайших галактик (плотность среды межгалактического пространства менее 1 атома водорода на 1 дм³).
  • ок. 1 000 000 000 000 000 000 км (1 квинтиллион км, 100 тысяч св. лет) — диаметр нашей галактики Млечный путь (200—400 миллиардов звёзд).

Межгалактическое пространство


Скорости, необходимые для выхода в ближний и дальний космос

Для того, чтобы выйти на орбиту, тело должно достичь определённой скорости. Космические скорости для Земли:

Если же какая-либо из скоростей будет меньше указаной, то тело не сможет выйти на соответствующую орбиту. Первым, кто понял, что для достижения таких скоростей при использовании любого химического топлива нужна многоступенчатая ракета на жидком топливе, был Константин Эдуардович Циолковский.

См. также

Фото космического газа, переданное с космического телескопа Хаббл

Ссылки

  • Галерея фотографий, полученных при помощи телескопа Хаббл (англ.)
  • Виртуальная обсерватория USAP

Примечания

  1. Presentation of the Karman separation line, used as the boundary separating Aeronautics and Astronautics (англ.). Официальный сайт Архивировано из первоисточника 22 августа 2011.
  2. ↑ Где начинается граница космоса?. Архивировано из первоисточника 22 августа 2011.
  3. ↑ Ученые уточнили границу космоса. Архивировано из первоисточника 22 августа 2011.
  4. Найдена ещё одна граница космоса. Архивировано из первоисточника 22 августа 2011.
  5. Бездушное пространство: Смерть в открытом космосе, «Популярная механика», 29 ноября 2006 г
  6. NASA: Human Body in a Vacuum
  7. Максаковский В.П. Географическая картина мира. — Ярославль: Верхневолжское издательство, 1996.
  8. Книга рекордов Гиннесса. Пер. с англ.. — М.: Тройка", 1993. — С. 96. — 304 с. — ISBN 5-87087-001-1.
  9. Труды всесоюзной конференции по изучению стратосферы. Л.-М., 1935. — С. 174, 255.
  10. Книга рекордов Гиннесса. Пер. с англ.. — М.: "Тройка", 1993. — С. 141. — 304 с. — ISBN 5-87087-001-1.
  11. Рекорды МиГ-25
  12. Ф. Розенберг. История физики. Л., 1934.
  13. http://www.nytimes.com/2014/10/25/science/alan-eustace-jumps-from-stratosphere-breaking-felix-baumgartners-world-record.html
  14. Попов Е.И. Спускаемые аппараты. — М.: "Знание", 1985. — 64 с.
  15. Бургесс З. К границам пространства. М., 1957.
  16. U.S. Standard Atmosphere, 1976. Thermal Protection Systems Expert and Material Properties Database. NASA.gov (September 27, 2000). Проверено 24 июня 2012. Архивировано из первоисточника 26 февраля 2013.
  17. Механика полёта сателлоида // Вопросы ракетной техники. — 1957. — № 2.
  18. Бубнов И. Я., Каманин Л. Н. Обитаемые космические станции. — М.: Воениздат, 1964. — 192 с.


Космическое пространство.

© 2016–2023 interlandltd.ru, Россия, Орел, ул. Кустова 70, +7 (4862) 20-00-12